Final - Optimization (2019-20) Time: 3 hours.

Attempt all questions. There are a total of 55 points, the maximum you can score is 50.

- Consider the *uncapacitated* network flow problem on a directed graph with supplies. Show that if a flow vector is *not* a tree solution, then it is *not* a basic solution of the problem.
 [5 marks]
- 2. Consider the network flow problem on the directed graph shown below. The numbers next to each directed arc \rightarrow is the *cost* associated to the arc, while the numbers next to \Rightarrow is the external *supply/demand* at the node.

Denote by **c** the vector of costs corresponding to the arc. We are interested in minimizing the total cost $\mathbf{c}^T \mathbf{f}$, where the flow vector \mathbf{f} satisfies the flow conservation equations and $\mathbf{f} \ge \mathbf{0}$.

- (a) Find an optimal basic feasible solution (feasible tree solution) to the problem. [7 marks]
- (b) Find the optimal cost for the problem. [3 marks]

Note: If you are implementing the simplex algorithm, you can find an initial feasible basic/tree solution by considering the tree indicated by dashed lines.

- 3. Let **A** be a symmetric square matrix. Consider the linear programming problem: minimize $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}\mathbf{x} \ge \mathbf{c}$, $\mathbf{x} \ge \mathbf{0}$. Prove that if \mathbf{x}^* satisfies $\mathbf{A}\mathbf{x}^* = \mathbf{c}$ and $\mathbf{x}^* \ge \mathbf{0}$, then \mathbf{x}^* is an optimal solution. [5 marks]
- 4. Give an example of a linear program of the form $\min_{\mathbf{x}\in P} \mathbf{c}^T \mathbf{x}$ where the polyhedron P has an extreme point but the minimization problem is unbounded. [3 marks]

5. Consider the primal problem: minimize $x_1 + 4x_2$

subject to
$$2x_1 + x_2 \ge 6,$$
$$5x_1 + 3x_2 \ge 7,$$
$$x_1, x_2 \ge 0.$$

- (a) Write down the dual of the above problem. [3 marks]
- (b) Find optimal solutions to the primal and the dual problems. [5 marks]
- (c) Find the optimal costs of the primal problem and the dual problems. [2 marks]
- 6. Solve the linear program: minimize $-2x_1 x_2 + x_3 4x_4$

subject to
$$x_1 - x_2 + x_3 - 3x_4 = 2,$$

 $x_1 + x_2 + 3x_4 = 6,$
 $x_1, x_2, x_3, x_4 \ge 0.$ [5 marks]

- 7. Let A be an $n \times n$ real matrix. Then show that the following are equivalent: [5 marks]
 - A is orthogonal, that is $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.
 - $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbf{R}^n$, where $\|\cdot\|$ is the Euclidean norm in \mathbf{R}^n .
- 8. While solving a linear programming problem (in standard form) by the simplex method, the following tableau is obtained at some iteration.

	0	• • •	0	\bar{c}_{m+1}	•••	\bar{c}_n
x_1	1	• • •	0	$a_{1,m+1}$	•••	$a_{1,n}$
:	÷		÷	:		÷
x_m	0	• • •	1	$a_{m,m+1}$		$a_{m,n}$

Assume that in this tableau we have $\bar{c}_j \ge 0$ for $j = m+1, \dots, n-1$ and $\bar{c}_n < 0$. In particular, x_n is the only candidate for entering the basis.

- (a) Suppose that x_n indeed enters the basis and that this is a nondegenerate pivot (that is, $\theta^* \neq 0$). Prove that x_n will remain basic in all subsequent iterations of the algorithm and that x_n is a basic variable in any optimal basis. [7 marks]
- (b) Suppose that x_n indeed enters the basis and that this is a degenerate pivot (that is, $\theta^* = 0$). Show that x_n need not be basic in an optimal basic feasible solution. [5 marks]